DESIGNING PERMEABLE PAVEMENTS

Water Sensitive SA 27th May 2021

James Luo

Civil Engineer

ABOUT CMAA

The Concrete Masonry Association of Australia Peak body representing the concrete masonry manufacturers of Australia. These include bricks, blocks, pavers and retaining walls.

CMAA

MANUALS, STANDARDS & CODE BOARDS

A REAL PROPERTY AND A REAL

RESEARCH

THE UNIVERSITY OF NEWCASTLE AUSTRALIA

University of South Australia

Queensland University of Technology

ADVOCACY & POLICY

NTDO A
NEPC
NLI U 🜌
National Environment Protection Cour

STRATEGIC VISION

1 Calm

WE MAKE IT EASIER TO BUILD IN BLOCK & PAVERS

ELOD

2

PROMOTE MEMBERS' PRODUCTS

FREE RESOURCES AND TECHNICAL HOTLINE

Please visit our website for a comprehensive catalogue of:

- technical manuals
- research papers and
- case studies.

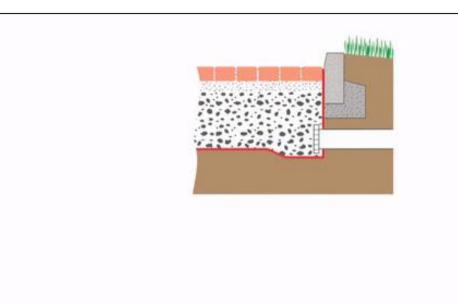
These resources are available from our website as a free pdf download

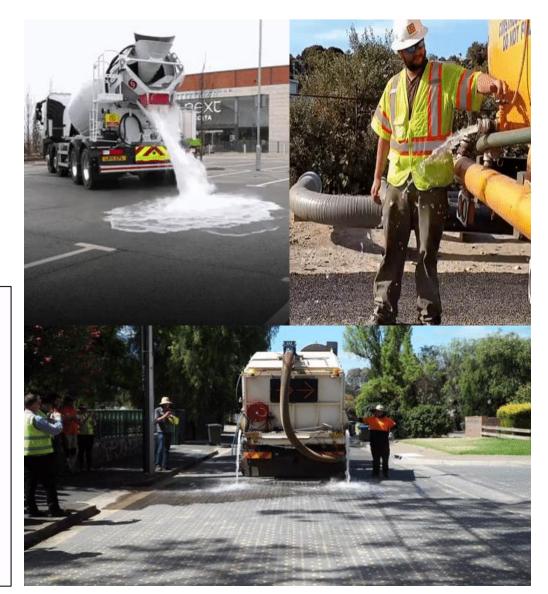
Technical Hotline | **1300 667 617** Website | **cmaa.com.au**

CMAA MEMBERS

CONTENTS

- 1. OVERVIEW
- 2. DESIGNPAVE/PERMPAVE SOFTWARE
- 3. RESIDENTIAL VS COMMERCIAL DETAILING
- 4. PROXIMITY TO STRUCTURES
- 5. COMMERCIAL CARPARKS
- 6. CASE STUDY QUINNS BEACH CARPARK CONCEPT


OVERVIEW



A permeable pavement system is a pavement that allows water to infiltrate the surface, where it is stored in the base course.

Trafficked permeable pavements include:

- Open-graded (Porous) Asphalt
- No-fines (Pervious) Concrete
- Permeable Interlocking Concrete Pavers

DESIGNPAVE/PERMPAVE SOFTWARE

CMAA's DesignPave can be used for designing a residential or industrial pavement from scratch, or analyse the design of your industrial pavement.

Designers are able to use the program to:

- Assess structural and traffic loads to determine the required capacity of the pavement;
- Design thickness of each layer; and
- Link with hydrological design

DesignPave is available free to download on CMAA's website: http://cmaa.com.au/engineering-pavement-software

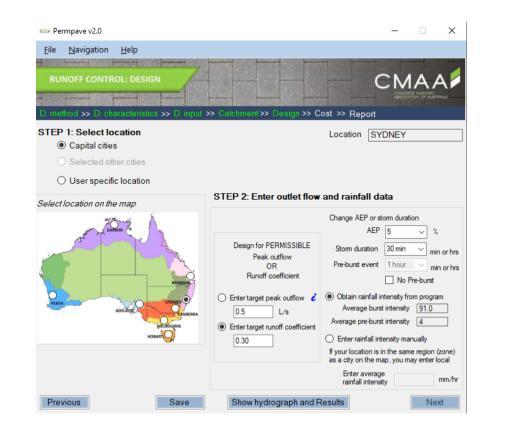
DESIGNPAVE/PERMPAVE SOFTWARE

PermPave is used for the hydrological design of your permeable pavement. It contains the following design features:

- Runoff control
- Water harvesting
- Water quality improvement

DESIGNPAVE/PERMPAVE SOFTWARE

PermPave has access to both ARR 97 and ARR 2016 data. ARR IFD data was revised in December 2016 to include:


- 1. Up to 30 years more data available which will make **more reliable estimates**
- 2. Data available from other water agencies in Australia which **improves** the **spatial coverage of data**
- 3. Improved statistical methods for analysis of rainfall data
- 4. Possible impacts of climate change

FLOOD CONTROL

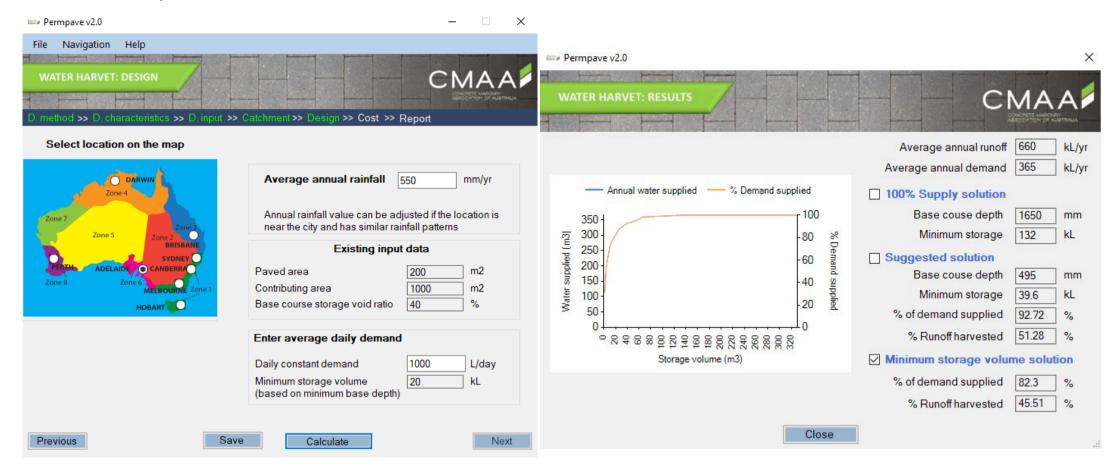
Users can input a location specific Intensity – Frequency – Duration (IFD) relationships to determine design storm events. A hydrograph is generated using 10 storm temporal patterns, where users can choose a storm temporal pattern. Hydraulic design results are generated once a temporal pattern is chosen.

RUNOFF CONTROL: RESULTS				C	MAA
Runoff design: Infiltration only Hydrograph Discharge(permissible)		Peak inflow runoff (L/s)	Permissible peak outflow (L/s)	Minimum depth of basecourse (mm)	Peak outflow (L/s)
Outflow	+	2.7	0.81	200	0
3.5	_	2.84	0.85	200	0
3.0		2.58	0.78	200	0
2.5		2.44	0.73	200	0
		2.78	0.83	200	0
		2.47	0.74	200	0
· 1.5· 1.0·	<	2.22	0.67	200	0
0.0 0 1000 2000 3000 4000 5000 500 1500 2500 3500 4500 5 Time (s)	500	ment design and	e results that you wa click OK below. Peak Inflow runof		your permeable
Export hydrograph to excel	Sel	ected hydrauli	c design result:	5:	
Infiltration rate (kh) 5E-07 m/s		Peak inflow		L/s	
Storage base area 100 m2	Pe	rmissible peak o Minimum de		L/s mm	
Void ratio 0.4		basecourse			

WATER QUALITY

REMOVAL OF TSS AND ANY OTHER POLLUTANTS

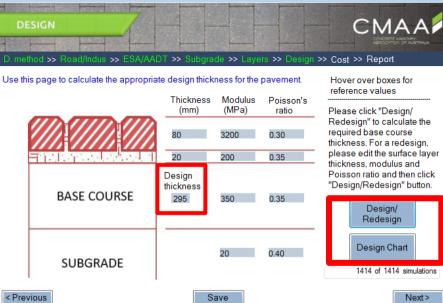
Users can input pollutant concentration, reduction coefficient and reduction target value Reduction coefficient can be software default value or generated using Hydrological effectiveness curve


WATER QUALITY IMPROVEMENT: DESIGN	CMAA	Suspended Solids	WATER QUALITY IMPROVEMENT: RESULTS	
D. method >>> D. characteristics >>> D. input >> Carl Estimated stormwater quality improvement Select location on the map		0.8 0.6 0.4 0.2 0.0 20 40 60 80 100 % MARV % MARV 0.73 eeding constants A: 1 B: 0.65 C: 5.5 Edit The graph is a representation of pollution reduction coefficient as a function of storage (as % MARV).	Runoff volume treated Phosphorus % of Runoff treated Nitrogen Suspended solids	Outflow0.5L/sBase course volume590m3Base course depth590mmPipe diameter15mmAverage annual runoff13750kL/yrPercentage of runoff treated95%Average annual runoff13062.kL/yr
Mean conc. (mg/L) Suspended Solids 60 Total Phosphorus 2.7 Total Nitrogen 0.4	rgets Reduction coefficient Reduction target (%) 0.9 OR Calculate 0.6 OR Calculate 0.6 OR Calculate 0.6 OR Calculate 0.6 OR Calculate 40 Vext	reduction coefficient = A-B*exp(-%MARV/C) By default, each coefficient is a Ratio of Mass loads calculated by MUSIC model against Hydrological Effectiveness Curve. The user may change the default values by clicking 'Edit' above	Water Quality Suspended Avg. annual runoff pollutant load (kg/yr) 825 Avg. annual pollutant load reduction (%) 86 Avg. annual runoff outflow pollutant load (kg/yr) 115.5 Close	Solids Phosphorus Nitrogen 37.12 5.5 57 57 15.96 2.37

WATER STORAGE

STORAGE OF WATER FOR RE-USE

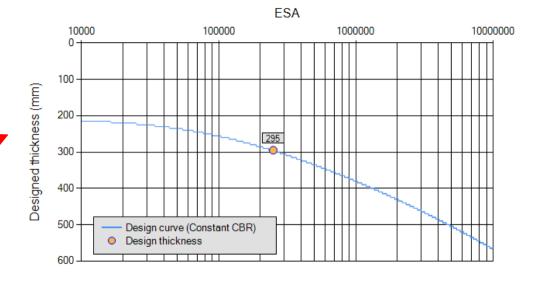
Users can input rainfall data, water storage requirement and daily constant water demand PermPave will determine the thickness of base required to achieve water storage or water demand requirements


File

Navigation

Help

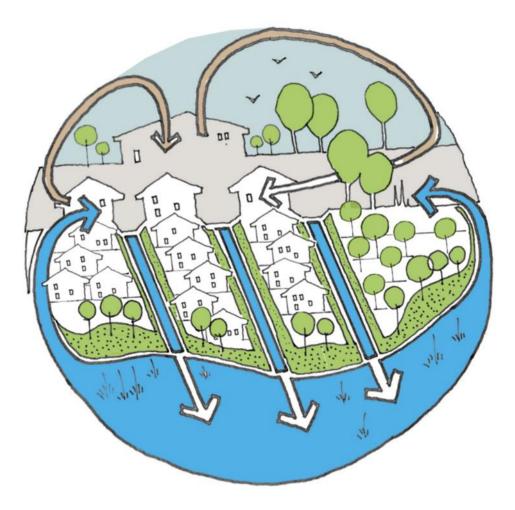
DESIGNPAVE/PERMPAVE SOFTWARE


- PermPave exists as a separate design methodology to the original structural design option in DesignPave
- When designing permeable pavements, both the hydrological and structural requirement of the pavement need to be satisfied.

Permpave v2.0

Comparison of projects

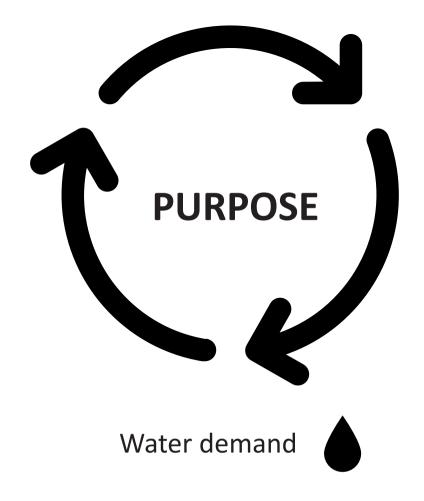
Parameters Mechanistic design Permpave v2.0 Estimated ESA 1000000 20 Subgrade CBR (%) 20 Paver Thickness 80 80 20 Bedding Sand Thickness 20 DesignPave project client details: NA 200 Base Course Thickness 150 The DesignPave base course design height is higher than Permpave height

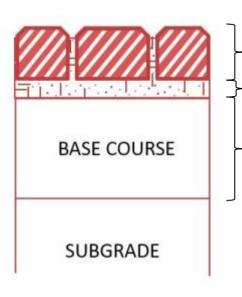


Next>

WHY PERMPAVE?

- The only structural and hydrological design software for the Australian climate
- Based on data from the
 Australian Bureau of
 Meteorology
- Advances Australia's permeable paving technology to be in step with the rest of the world
- Culmination of 40 years of
 hydrological and pavement
 engineering knowledge




LOADING REQUIREMENTS

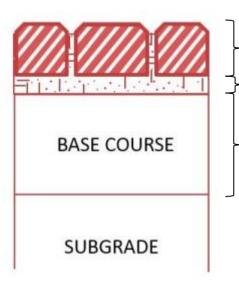
RESIDENTIAL	COMMERCIAL
Driveways	Carparks
Domestic parking	Local access roads
Footpaths	Public footpaths
Design: Low volume (max 10 vehicles/day) Light vehicular traffic	Design: High volume (max 200-500 vehicles/day) Mixed vehicular traffic

RESIDENTIAL VS COMMERCIAL

EXAMPLE – RESIDENTIAL DRIVEWAY

- Reduce water pooling
- Reduce excessive water runoff
- Allowed water to filter through the driveway surface and run into the natural water table at the lowest point of the property.

- 50 mm permeable paver 25 mm bedding layer
- 100 mm NFC basecourse layer



- Light vehicle passes (<10/day)</p>
- Pedestrian

RESIDENTIAL VS COMMERCIAL

EXAMPLE – COMMERCIAL BUS STATION

- Reduce stormwater pits for improved pedestrian accessibility
- Provide existing tree protection and sustainability via recharge of local aquifer
- Maintained natural drainage patterns and low capacity of existing old drainage

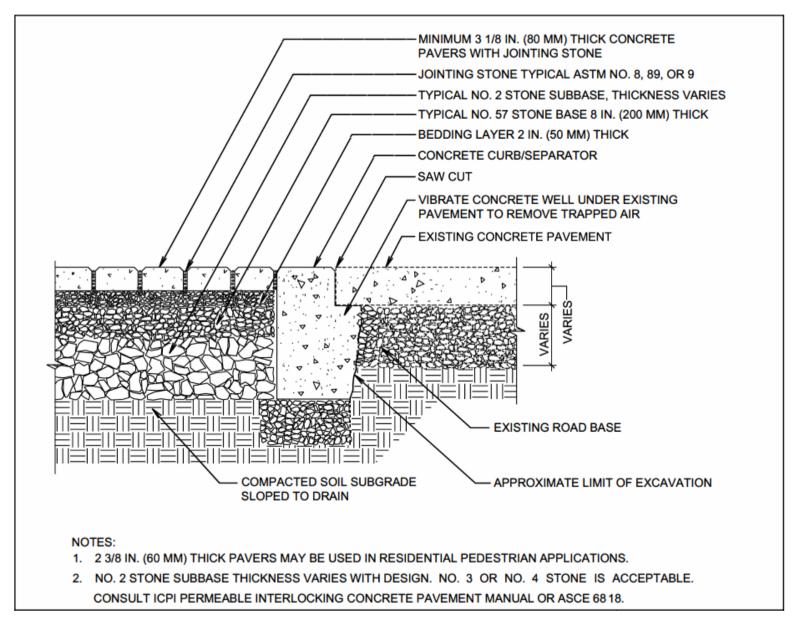
- 80 mm permeable paver 25 mm bedding layer
- 150 mm recycled concrete basecourse layer

- Mixed vehicle passes
- Pedestrian (20,000/hour)

RESIDENTIAL VS COMMERCIAL

WATER DEMAND

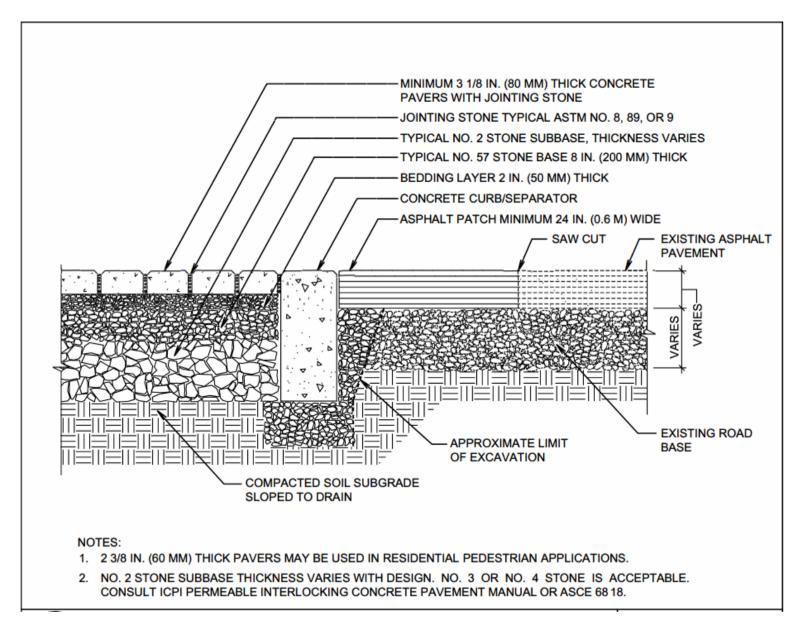
What is the purpose of your permeable pavement?



Flood control

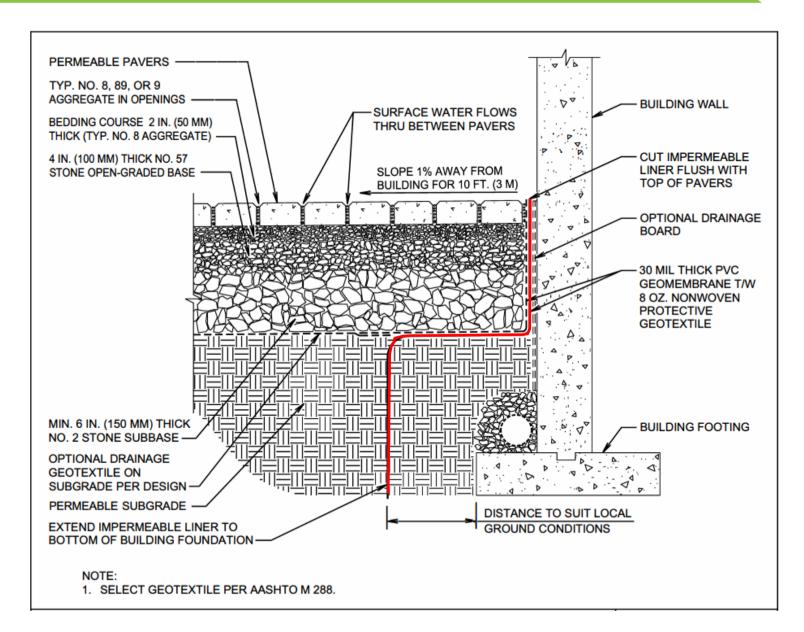
Water harvesting

PROXIMITY TO STRUCTURES/FOOTINGS



Pavement transition to concrete (ICPI, 2021)

PROXIMITY TO STRUCTURES/FOOTINGS



Pavement transition to asphalt (ICPI, 2021)

PROXIMITY TO STRUCTURES/FOOTINGS

PICP adjacent to building structure (ICPI, 2021)

COMMERCIAL CARPARKS

Many carparks experience ponding due to pavement settlement and rutting, which can cause accessibility issues after a rainfall event.

COMMERCIAL CARPARKS

It is not uncommon for PICPs to be used only in parking bays. Properly designed carparks can meet pollution reduction targets and peak flow volume targets.

Car Parking Along Kerrabee Ave

North Haven Football Club

COMMERCIAL CARPARKS

CASE STUDY – COMMERCIAL CARPARK

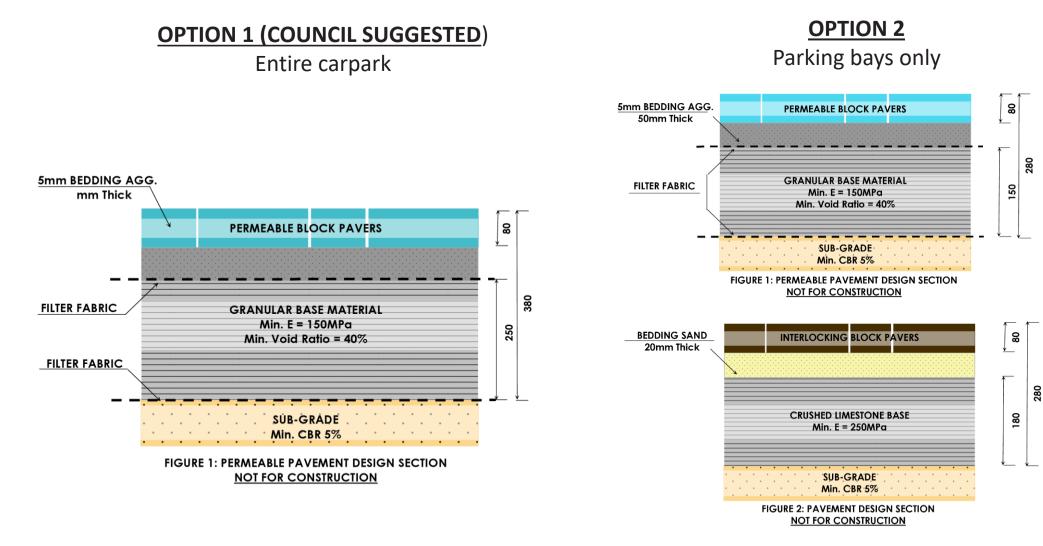
QUINNS BEACH CARPARK PROJECT CONCEPT



City of Wanneroo

CASE STUDY – COMMERCIAL CARPARK

QUINNS BEACH CARPARK PROJECT CONCEPT



City of Wanneroo

CASE STUDY – COMMERCIAL CARPARK

QUINNS BEACH CARPARK ANALYSIS

QUINNS BEACH CARPARK SUMMARY

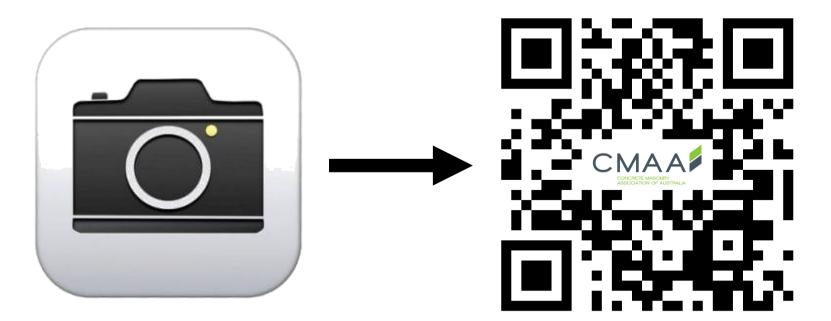
Benefit	Option 1 (Entire Carpark)	Option 2 (Parking Bays Only)
Water Outflow	OL/s	OL/s
Water Quality (TSS)	82% Reduction	62% Reduction
Water Storage	210kL	66kL
Aesthetics	\checkmark	\checkmark
Maintenance	\checkmark	\checkmark
Traffic Load	10,000ESA - GOVERNS	10,000ESA
Urban Heat Island Effect	Better	Good
Total Cost	\$90/m²	\$69/m²

APPROVED INSTALLER PROGRAM

The CMAA delivers the Approved Installer Program to councils and paver contractors to ensure pavements are being designed and installed to current industry best practice standards

We are launching the first CMAA Approved Installer Program for 2021!

Where: City of Adelaide When: 12th August 2021



REGISTER FOR DESIGNPAVE NOW

www.cmaa.com.au/engineering-pavement-software