

WSUD – in a future warmer climate

Mellissa Bradley, Program Manager

Parks and Leisure Australia 25 February 2015

Water Sensitive SA - established to build the capacity of all organisations with a role in the planning, design, approval, construction or maintenance of new developments and infrastructure to implement best practice water sensitive urban design (WSUD)

Water Sensitive SA Program Partners

LOCAL GOVERNMENT RESEARCH & DEVELOPMENT SCHEME

What we provide:

- WSUD policy development and implementation pathways
- specialist training
- networking opportunities and peer-to-peer
- more accessible WSUD research for practitioners
- guidelines and tools
- information sharing through our website, e-newsletter, blog articles and forums.

Angas Street, Adelaide adjacent SAPOL

Overview

- Climate change impacts on stormwater yields
- Case studies,
 - City of Burnside B-Pods
 - City of Unley, Randolph Ave Streetscape Upgrade
- Research- building the case for WSUD

Oaklands Park Wetland, City of Marion Photo: M. Mullan

Climate change impacts on stormwater yields

For the Adelaide region the CSIRO predicts for 2050

- annual rainfall reduction by 2050 of between 5-10%
- an increase of 2-4% in potential evapotranspiration.

compared with 1980-1999.

Adelaide Zoo

Implications of climate change & infill development on stormwater yields

Figure 7 Total yield for Greater Adelaide using climate change and urban consolidation scenario

W&G Engineers (2009), Urban Stormwater Harvesting Options Study

Notes

¹ 5 % increase in impervious area represents approx. 14% of existing properties being redeveloped.

² 10 % increase in impervious area represents approx. 28% of existing properties being redeveloped.

WSUD Design Objectives

Development Plan Policy

- Water Conservation
- Stormwater quality pollution reduction performance targets
- Stormwater quantity rate and volume discharged = predevelopment conditions

Flood Management

capacity of the existing drainage system is not exceeded.

no increase in the 5 year ARI peak flow compared to existing conditions.

no increase in flood risk for the 100 year ARI peak flow, compared to existing conditions.

Old Port Road, Queenstown (SA)

Source: City of Port Adelaide Enfield

Kirkcaldy Avenue, Grange

Source: Baden Myers

Stormwater Quality

45%

retention of typical annual urban load of total nitrogen.

60%

retention of typical annual urban load of total phosphorus.

80%

retention of typical annual urban load of suspended solids.

Caltex, 734 Marion Rd, Marion

Source: Baden Myers

Cooke Reserve, Royal Park.

Ah ha moments.....

Balance back into the urban water cycle

"To reintegrate urban water into the landscape to facilitate a range of benefits including microclimate cooling, local habitat and provision of attractive spaces for community use and wellbeing".

<u>City of Port Phillip (Vic) Planning scheme</u>. In policy 22.12 Stormwater Management (Water Sensitive Urban Design) you will find policy Objectives 22.12.2

Open Space Solutions

Designing for multiple benefits

Bowden Urban Village (SA)

Source: Water Sensitive SA

Regents Park (NSW)

Source: Blacktown City Council

Streetscape Solutions

Streetscale WSUD

Stawell Street, Mentone (VIC) Source: M.Dobbie

Lochiel Park, (SA)

Redfern, NSW Source: M.Dobbie

Jellicoe Street, Auckland (NZ) Source: DesignFlow

Zero Additional Maintenance WSUD Handbook

Park Avenue, Doncaster, single barrier kerb installation Source: CRC for Water Sensitive Cities

Preliminary field trials undertaken at the Manningham depot in 2014/15 confirmed the suitability of the **Soft leaf buffalo grass** (Palmetto SS100 cultivar)

www.watersensitivecities.org.au

Burnside B-Pods – infiltration systems

Performance Estimates

Development type

Urban streetscape

WSUD feature type(s)

Passive infiltration via subsurface stormwater retention cells

No. of WSUD features

More than 200 since 2013

Total volume of stormwater storage

 Capture of 1.77 ML of stormwater runoff p.a. based on 200 B-Pods capturing 108L on 82 rain days = 8,856L/B-Pod/year

Stormwater peak reduction (Goyder Institute for Water Research modelling)

• 1%

B-Pods locations

Union Street, Dulwich

Union Street, Dulwich

Laurel Ave, Linden Park

Research gaps

- Any impacts on road infrastructure associated with infiltration
- Tree health benefits a control needed of trees planted without infiltration systems

Brigalow Avenue, Kensington Gardens Source: City of Burnside

EPA, Catchment to Coast Program Raingarden 500 – Demonstration Projects

- Randolph Avenue Fullarton, City of Unley
- Gilbert and Russell Streets, City of Adelaide
- Brooker Terrace (and others), City of West Torrens

Gilbert Street, City of Adelaide

Brooker Terrace, City of West Torrens

Randolph Ave, Streetscape Upgrade City of Unley

Randolph Avenue Parkside, Prior to construction Source: City of Unley and Southfront

Randolph Ave, Streetscape Upgrade City of Unley

Bioretention – raingardens

- 10 raingardens of dimensions 1.70-2.10m wide x 6.75-25.5m long)
- Total area 245m2 (0.5% of impervious contributing catchment)
- A saturated zone of 450mm depth to assist plant viability and storage capacity
- A design infiltration rate of 160mm/hr through filter media
- HDPE lined system with no exfiltration

Stormwater infiltration wells

- 31 infiltration wells of dimensions
 600x400x450 mm deep
- Waterproof membrane top and bottom with geofrabric and 20mm screenings around the perimeter, providing lateral infiltration to adjacent trees and garden beds.

Typical Raingarden Cross Section

Randolph Ave, Fullarton

July 2015 January 2016

Building the case for WSUD and Green Infrastructure

- 1. Cost-Benefit analysis tool for green infrastructure and WSUD
- Infill development scenarios that meet WSUD performance targets and thermal comfort outcomes

On-site solutions

Infill development scenarios for WSUD performance and thermal comfort

- 1. The effectiveness of potential WSUD solutions to:
 - improve stormwater runoff quality
 - manage runoff quantity
- 2. An assessment of ambient temperatures as a result of the urban heat island.

Infill development scenarios for WSUD performance and thermal comfort

Scenarios to be assessed will include

- dwelling footprint to provide increased private open space
- driveway width and add central driveway raingarden and trees
- Underground stormwater storage (retention for re-use)
- Above ground stormwater storage (up-sizing of rainwater tanks, 2,000L, 3,000L and 5,000L)
- Permeable pavers versus concrete driveways
- Onsite detention
- Green roofs

ENVI-MET – Atmospheric Temperature Base Case

■ 22% green space

ENVI-MET – Atmospheric Temperature S1 - Reduced foot print plus central raingarden

Scenario 1

- 36% impervious
- 36% pervious pavement
- 29% green space

Upcoming Training

Training & Events

25 FEB 16 Detailed design of constructed stormwater treatment wetlands

25 FEBRUARY - 9:00am to 4:30pm

MAR 16

Leadership across boundaries to advance water sensitive urban design

21 MARCH - 8:30am to 22 MARCH - 5:00pm

25 may 16 Construction of WSUD assets

25 MAY - 9:00am to 4:30pm

26 MAY 16 Maintenance of WSUD assets

26 MAY - 9:00am to 4:30pm

Greenfields Wetlands

Source: City of Salisbury

www.watersensitivesa.com

Mellissa Bradley, Program Manager Mellissa@watersensitivesa.com