

Brownfield example	
1. Market and the second s	

- Highly urbanised catchment in the Sydney CBD – 1.6 km² Pit and pipe network with overland flo
- conveyed on roads Evaluating distributed flooding
- Use coupled 1D/2D hydaulic model Combined hydrology and hydraulic

Australian Reinfal & Punott

Brownfield example

 Overland flow is a major hazard that needs to be managed

<u>ن</u>

Bro	wnfield example	A DE	
Teste 1. 2.	ed 3 methods Hydrology model for small catchments – inflow to 1D/2D hydraulic model Concentrated direct rain applied to polygons of different land curf core with		
3.	losses – inflow to 1D/2D hydraulic model Direct rain less losses on grid (2 m X 2 m)		
۲	ARR Urban Book: Coombes, Roso, Babister	7/01/2019	Australian Pantal & Puncit

Brownfield example

- Rural IL = 28 mm, CL = 1.6 mm/hr, median 1% AEP 1 hr pre-burst = 1.1 mm Surfaces
 Torkers, 20% pervious, 5% indirectly connected impervious surfaces
 Urban Burst losses (Ch. 3, Book 5 & local data less pre-burst rain)

7/01/2019

ARR Urban Book: Coombes, Roso, Babister

- ElA's LCSSES (Cl. 3, BOOK 5 & OLCA UAL (CL. 4)
 ElA's LL = 0.4 mm, CL = 0 mm/hr
 ICIA's LL = 16.1 mm, CL = 2.5 mm/hr
 Pervious: IL = 26.8 mm, CL = 1.6 mm/hr
 Pit blockage factors from Section 5.5, Boo

	Kerb Inlet	80%
	Grated Inlet	50%
k 9	Combination	Assume Grate 100% blocked
		In-grade Inlet Pit
	Kerb Inlet	80%
	Grated Inlet	60%
	Combination	90%

•			
•			
•			

Brownfield example

Buildings were nulled in the direct rain on grid method Elevation raised by 2 m with n = 0.015

Buildings were separate polygons in concentrated direct rain model

Volume check undertaken in upper catchment to define catchment storage

ARR Urban Book: Coombes, Roso, Babister

Total rain + inflows – losses – outflows
18% (15.4 mm) retained on grid due to topography

7/01/2019

Brownfield example

- Need to correct direct rain model by reducing assumed losses

 - This will increase pipe and surface flows
- Outflows changed from 62 mm to 74 mm for concentrated direct rain
 Outflows changed from 64 mm to 74 mm for direct rain on grid
 Total catchment storage (Initial losses) was 16 mm using direct rain
 methods with volume check

Brownfield example

Should also use sensitivity tests:

- Accounting for depression storage loss by reducing the initial loss. Apply direct rainfall with initial loss, less the average depth on grid
- Accounting for depression storage using a restart file, which reapplied the conditions from the last time step to the model. Direct rainfall applied with the initial conditions adopted from the final time step of the initial simulation

Direct rain models should also be compared to traditional hydrology

4RR Urban Book: Coombes, Roso, Babister

ARR -

Tips

<u>17</u>

- Running ensembles through hydraulic model
- Make sure you account for grid cells not wet in some ensembles when taking average
- Check volume of runoff
- Find an event close to average grid results for simple development assessments

7/01/2019

ALERTRANS