

Characterisation of sediments in urban catchments found in infiltration systems – Kingswood case study

Harsha Sapdhare PhD – Research and Development Manager Baden Myers PhD – Research Fellow, University of South Australia David Lawry OAM – Director, Space Down Under <u>harsha@spacedownunder.com.au</u> <u>https://www.spacedownunder.com.au/</u>

Case study site: Eynesbury Ave, Mitcham, South Australia

Catchment characteristics

Study catchment area – 2.7 ha. The longitudinal slopes 1 to 1.4 % Pervious area – roofs, roads Semi-impervious area – driveways, footpaths, other paved areas

Pervious area – nature strips, vegetated and non-vegetated areas

R300 TREENET inlet: Capture zone

Leaky wells – Infiltration zone

Total 28 TREENET inlets with infiltration systems (leaky wells)
Filter media

Gravel x 7
Water treatment solids x 7 (SPACE)

Sandy loam x 7Clay x 7

Sediment collection – Capture zone

Sediment collection – Infiltration zone

CALL MADE NOT

Chemical characteristics

Heavy metals	Contaminants mg/kg ± SD
Arsenic	7.25 ± 3.34
Chromium	13.75 ± 3.41
Copper	20.5 ± 9.60
Lead	22 ± 11.76
Manganese	176 ± 82.44
Nickel	7.5 ± 2.06
Zinc	51.25 ± 5.06
Total petroleum	940 ± 171.46
hydrocarbons	
Organophosphorus pesticide	101.05 ± 6.43
surrogate	

Source of sediments

Source	EMC, mg/L
Bare ground	736
Car park	64
Commercial	61
Construction site	1200
Grass	40
Road	229
Roof	16.3

Current models: TREENET Inlet Systems

TREENET Inlet Systems

Drew Street, Two Wells Catchment Area - 3.85 hectare

a. Catchment area – 3.85 hectare b. Capture zone – 5 * R750 double slots (TREENET inlets) c. Infiltration zone – 5* R275 L (Trench) d. Installation date –July 2021 e. Tree species – Golden rain trees (koelreuteria paniculate) f. Soil Type – Sandy loam

Hare Street, Kapunda Catchment Area - 1 hectare

a. Catchment area – 1 hectare
b. Capture zone – 5 * R750 double slots (TREENET inlets)
c. Infiltration zone – 5 * R275 L (Trench)
d. Installation date – July 2021
e. Tree species – Cupaniopsis anacardioides (Tuckeroo)
f. Soil Type – Medium clay

Heritage Drive, Wallaroo Catchment Area - 0.33 hectare a. Catchment area – 3.85 hectare b. Capture zone – 5 * R750 double slots (TREENET inlets) c. Infiltration zone – 5 * R275 L (Trench) d. Installation date – 15th June 2021 e. Tree species - Araucaria heterophylla (Norflok Island pine) f. Soil type - Sandy

- 4.19 ha catchment area
- Urban residential street
- Soil type sandy clay
- Tree Species Japanese elm (Zelkova serrata)
- 25 Trees with inlets
- 26 Trees with drip irrigation
- 4 Trees with control irrigation

Summary

- Public WSUD Infrastructure
- Harvests stormwater directly from existing kerb design
 - Design sensitive
 - Cost effective
 - Reusing runoff to irrigate street
 trees
 - Collect pollutants at their source (heavy metals, sediments)

Port Adelaide Enfield

https://www.spacedownunder.com.au/

References

- Gleeson X, Guan H, Johnson T, Zhou Y, Impacts of enhanced stormwater infiltration on urban Melia Azedarach Functioning in dry season, *TREENET conference* 2020
- Gleeson X, Guan H, Johnson T, Zhou Y, Impacts of enhanced stormwater infiltration on urban Melia Azedarach Functioning in dry season, *TREENET conference* 2020
- Hussain s, Examining the impacts of R750 TREENET Inlets on stormwater discharge using monitored and simulated flows, TREENET conference 2020
- Johnson T, Moore G, Cameron D, Brien C, 2019, An investigation of tree growth in permeable paving, Urban Forestry and Urban Greening, 43, pp. 1-11
- Sapdhare, H, Myers, B, Beecham, S & Brien, C 2018, 'Performance of a kerb side inlet to irrigate street trees and to improve road runoff water quality: a comparison of four media types', Environmental Science and Pollution Research, pp. 1-13
- Hussain s, Examining the impacts of R750 TREENET Inlets on stormwater discharge using monitored and simulated flows, TREENET conference 2020
- Johnson T, Moore G, Cameron D, Brien C, 2019, An investigation of tree growth in permeable paving, Urban Forestry and Urban Greening, 43, pp. 1-11
- Sapdhare, H, Myers, B, Beecham, S & Brien, C 2018, 'Performance of a kerb side inlet to irrigate street trees and to improve road runoff water quality: a comparison of four media types', Environmental Science and Pollution Research, pp. 1-13

Particle size distribution

Sediment